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ABSTRACT
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The overall objective of this research is to develop a constitutive

model for granular materials accounting for its micro-structure. The

project focussed on the theoretical development of stress-~strain
relationship from a micro-mechanics approach, the law governing the force-
displacement behavior at a contact under a general cyclic loading

condition, and the mathematical characterization of the packing structure in

the form of fabric tensor of a granular assembly. Experimental tests were
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conducted on rod assemblies in a directional shear box to verify the
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developed theory. Analytical expressions were obtained for the stiffness

“ constants of anisotropic granular assemblies.
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Chapter 1

SUMMARY OF THE PROJECT

o,
.yv

1.1 RESEARCH OBJECTIVES

The general objective of this research is to study the mechanics of
granular material from a micro-structural point of view. The specific
objectives of this research are as follows:

1. development of a mathematical model to obtain the stress-strain

o S
2 BBA R

relationship for a granular material explicitly considering the micro-
structure characteristics of the packing,

2. study of the force-displacement law at a contact between two non-

WS xxx

conforming bodies and its implementation in the stress-strain relationship,

3. development of the mathematical characterization of the

ot

micro-structure of a granular assembly and investigation of its effect on
the stiffness characteristics of the packings,
4. experimental study on rod assemblies in a directional shear box to

investigate the effects of packing structure and loading conditions on the

- en o A5 MR W &
m- .a

mechanical behavior of granular assemblies, and

L4
0%

5. verification of the theoretical model by comparing the theoretical

results with those from tests on rod assemblies in directional shear box and

-

other available tests in the literature.

I

SN

M.

A 1.2 ACCOMPLISHMENTS

L

R 1.2.1 Theory

@

” A general mathematical model is developed to evaluate the stress-strain
L} L&

P

¢ 3ﬁ behavior of granular packings based on micro-structural considerations. Two
L)
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approaches are followed, namely, (a) mobilized plane approach and (b)

particulate approach.

(a) The mobilized plane model assumes that a large number of mobilized
planes are developed in a soil element when subject to loading. The
overall mechanical behavior of a packing can be obtained based on the

movement of the mobilized planes. Work on this approach is given in

publications 1, 2, 4 and 7 shown in section 1.3.3.

(b) The particulate model explicitly incorporates the geometrical

characteristics of the packing, such as, the void ratio, the

coordination number, and the contact normal distribution. The work

accomplished in this approach is as follows:

(b.1) The formulation of the stress-strain relationship for regular
packings of equal size particles is given in publications 5 and
12 in section 1.3.3.

(b.2) The formulation of the stress-strain relationship for regular

packings of multi size particles is given in publication 8 in

2N B P s R

section 1.3.3.

{(b.3) The formulation of the stress-strain relationship for random

)
VS
: packings of multi size particles is given in publications 3 and
I
‘- 10 in section 1.3.3.
P hva)
The theoretical development for the particulate model is discussed in

L X
f ?h Chapter 2 of this report.
i
D)

.|
b »
e 1.2.2 Contact Law
M ﬂq The contact force-displacement law for two non-conforming bodies in
LY

Ry
h contact is incorporated in the stress-strain formulation for the particulate
)

h g .
Y approach. The work accomplished is as follows:

S 2
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(a) Closed-form solutions of the constitutive matrix for linear

contact law are given in publications 6, 9 and 10 in section 1.3.3.

(b) Solutions for non-linear Hertzian-Mindlin contact law are given in

publications 6, 9, 10 and 11 in section 1.3.3.

The contact law is discussed in Chapter 3 and the solutions are shown

in Chapter 4 and 6 of this report.

1.2.3 Fabric and its Effect on the Mechanical Properties

Mathematical characterization of the micro-structure of a granular

assembly is developed. This is incorporated in the stress-strain
formulation for the particulate approach to study the effect of packing

structure on the stiffness properties. The work accomplished is as follows:

(a) The formulation for representing contact normal distribution and
its relationship with the fabric tensor is given in publications 9 and
10 in section 1.3.3.

(b) The stiffness properties of packings with anisotropic micro-
structure are given in publications 9, 10 and 11 in section 1.3.3.

The discussion on fabric and its effect on stiffness properties of a

packing is given in Chapter 4.

1.2.4 Experiments on Rod Assemblies

Experiments are conducted on assemblies of cvlindrical rods to

investigate the deformation behavior. The work accomplished is as follows:

(a) Results on directional shear box are given in publications 5, 8
and 13 in section 1.3.3.

(b) Results on model footing tests are given in publication 14 in

section 1.3.3.

3
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The experimental results on the directional shear cell is presented in

Chapter 5 of this report.

1.2.5 Verification of the Theoretical Model
The theoretical model is verified by comparing the theoretical results
with those from the tests in directional shear box and other available test
results in the literature. The work accomplished is as follows:
(a) Comparison with results from tests in directional shear box are
given in publications 5 and 8 in section 1.3.3.
(b) Comparisons with results on assemblies of glass balls in resonant
column device and sands under low amplitude waves are given in
publication 11 in section 1.3.3.

The comparisons are discussed in Chapter 6 of this report.

1.3 SUMMARY OF THE PROJECT
1.3.1 Grant Information:

Grant Number : AFOSR-86-0151

Amount: S 150,489
Period: Apr. 1, 1986 -~ Aug. 31, 19BL
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Chapter 2

THEORETICAL DEVELOPMENT

The stress-strain modelling of discrete systems, such as granular
packings, can only be acheived by considering the continuum field quantities
as averages of their discrete analogues (Chang 1987, Chang and Misra 1988b).
The stress, a continuum field variable, is related to the discrete contact
forces in a granular media. Similarly, the strain in a granular media is

related to the contact displacements.

2.1 STRESSES AND CONTACT FORCES

Assembly of spherical particles can be divided into polyhedral sub-
volumes defined as ’‘Voronoi cells’ such that the space occupied by the
assembly is completely filled (see Fig. 2.1). This polyhedral cell is
chosen to contain a particle and the void space closest to that particle
(Finney 1970). The average stress tensor Egj within the nth (see Fig. 2.1)

'Voronoi cell’ is given by

SR T J‘ .. dv (2.1)
1_] Avn IJ

where AV" is the volume of the nth ’Voronoi cell’. From Eq. 2.1 and using
the theorem of stress means (Truesdell and Toupin 196Q), the average stress
tensor for the ’Voronoi cell’ is expressed in terms of surface tractions on

the ’'Voronoi cell’ as follows
n 1

0,, = —— t. r, ds 2.2
%3 A" J i3 (2.2)

vhere ti is the traction vector on the surface of the nth sub-volume at the

location given by the position vector rj with the origin chosen at the

centre of the sphere contained in the nth sub-volume. In a packing of

t
t

LY,
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spheres, instead of continuous surface tractions there are discrete contact
points on the surface of the nth sub-volume where the forces act (see Fig.

2.1). Therefore, for this system, Eq. 2.2 reads as

G‘i‘. =—13 Y c'.l‘"‘ i
N A J

(2.3)
vhere t?m is the contact force at the mth contact of the nth particle and
r;m represents the position vector of that contact.

For continuum modelling of packings of spheres, it is necessary to
define the stress for a representative volume which best represents the
packing. This representative volume comprises ot many ‘Voronoi cells’ of
the packing. Clearly, the stress field in an assembly of spheres, due to
its discrete nature, is heterogeneous, that is, the average stress E?j of
the 'Voronoi cell’ varies from one cell to another. Therefore, in this
case, a ‘mean’ stress tensor for a chosen representative volume may be
defined. The ’'mean’ stress tensor, for this representative volume, is

defined as an average of the stress tensors of its sub-volumes (’Voronoi

cell’) as follows,
1

-n n
<ai> = § E o5y AV (2.4)
vhere E?j is the average stress tensor for the sub-volumes av? and the

volume V is given by
v=Y " (2.5)
n

Further, substituting Eq. 2.3 into Eq. 2.4, the 'mean’ stress tensor of the

medium can be written as
1 nm _nm
o,...2 = = t,. . 2.6
(i3)" =V )-; );n_- ity (2.6)
vhere () represents the symmetric part. The skew symmetric part, given by,

1 nm _nm
<°lijl> = E }% Y1ty (2.7)
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represents the ’‘mean’ torque of the representative volume contributed by the
torque for each sub-volume caused by the contact force t?m acting at o,
In absence of any applied torque or couple stresses, the skew symmetric part
is expected to be zero in order to satisfy Cauchy’s law of balance of
angular momentum (Truesdell and Toupin 1960).

It is noted that representation of stress tensor in granular media,
similar to Eq. 2.6, have also been developed by Chrisstoffersen et. al.

1981, Rothenburg and Selvadurai 1981, and Kishino 1978 using different

arguments.

2.2 [KINEMATICS OF GRANULAR MEDIA
2.2.1 Relative displacement between two contacting spheres

Under an increment of loading, the spheres comprising the granular
assembly displace from their original position leading to the deformation of
the assembly. Each particle in the assembly, in general, has two modes of
movement, namely, translational movement denoted by vector u and rotational
movement denoted by w. These movements are accompanied by the interactions
at the contact between two particles. Assuming the particles to be rigid,
the relative displacement at a contact between two particles, n and p (see
Fig. 2.2), can be expressed by
§=(u"- WP+ (@ x ™+ (P x P (2.8)
where the first term on the right hand side of Eq. 2.8 is contributed by the
translation, while the other terms are from particle spin. Further, the
relative displacement 8 can be expressed as
&= &M, &P (2.9)
vhere 8" and & are the relative displacements associated with particles n

and p respectively, and superscript m represents the contact between n and
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Fig. 2.2 Displacement of two particles in contact. X
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p. The relative displacement 8 has, in general, two components, namely, the

normal relative displacement and the shear relative displacement.

2.2.2 Strain tensor

Similar to the stress field, the strain field in a packing of spheres
is, in general, inrhomogeneous and discontinuous. Analogous to the ’'mean’

stress tensor, a '‘mean’ strain tensor can be established for the chosen

22 4 k5 ¥ S

representative volume. The ’‘mean’ strain tensor for the representative
volume is defined from energy equivalence, which states, in general terms,
that the work done expressed in terms of the 'mean’ stress and ‘mean’ strain
tensor is same as the work done expressed in terms of the contact forces and
the relative displacements at the contacts.

The work done, for the representative volume V, expressed in terms of
the 'mean’ stress and the ’‘mean’ strain is given by
dv = V <°(ij)> <éij> (2.10)

vhere <éij> is the increment of the symmetric ‘mean’ strain tensor. By

whH TE O TR OREX

definition, the increment of symmetric 'mean’ strain tensor is related to

the increment of displacement gradient <Di'> and the increment of the

2 ol

rotational tensor <Qij> as follows,

<£ij> = <Dij> ~ <Qij> (2.11)

Needless to say that, as the stress tensor is symmetric, the rotational

L

tensor <Qij> (i.e., the anti-symmetric part of the displacement gradient)

P

does not contribute to the work done, d4dV.

A

The work done expressed in terms of the contact forces and the

incremental relative displacements at the contacts for the same

=%

! representative volume, is given by

3
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av = Y Y " m (2.12)
T m 1 1

Equating Eq. 2.10 and 2.12 and substituting the expression for

<°(ij)> from Eq. 2.6, one obtains the relationship between the relative
displacement and the ’‘mean’ strain tensor

8i = rj <€ij> (2.13)

Using Eq. 2.11, Eq. 2.13 can be further written in terms of the displacement
gradient tensor and the rotation tensor as follows

nm

M- ™M op. > - ™. > (2.14)
i j ij j ij

2.2.3 Particle spin and rotation tensor

In Eq. 2.14, ng represents the relative displacement at the mth
contact of the nth ball with respect to its contacting neighbor p
considering that the pth ball does not move. Further, by definition, the
relative displacement of the nth and the pth balls, compatible with the
displacement gradient field Di" is
T r;m <D, > - r?m <D; 5> (2.15)
Thus comparing Eqs. 2.8, 2.14 and 2.15, the following relationship is
obtained between the particle spin and the rotation tensor,
Mox s Pk WP - [ SRS ] <@, > (2.16)

Eq. 2.16 represents an underlying assumption that the mean particle spin is

same as the ’'mean’ rigid body rotation Qij of the representative volume.

2.3 RELATION BETWEEN INCREMENTAL STRESS AND STRAIN
2.3.1 Local constitutive law

A local constitutive law relating the incremental contact force and
the relative displacement at the contact is defined. For convenience, the

local constitutive law is defined in a local cartesian coordinate system

A ) ) i . A - - » AT Ty RN
NN XN AT SR BT KT W N NN MRS NS IR KGR IAR RGN B KR S K MAN BB KA N RN KA KOCRR N KR AR R s )

AN
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formed by the base vectors n, s and t. Where n is the unit normal vector at «]

the mth contact and s and t are chosen arbitrarily in general (Fig. 2.3).

O

Let ng denote the transformation between the local coordinate system and ]

L\

the global coordinate system such that s

]

nm nm _nm nm nm ,nm -

dJ = Tik 6}( ’ and fl = Tik tk (2.17) .

wvhere f?m and tzm are the force increments at the mth contact of the nth $

!

x particle in the local and global coordinate system respectively, d;m and éﬁm :

Lot v

v are the relative displacements increment at the mth contact of the nth .

g particle in the local and global coordinate system respectively. The ‘.“

g

transformation tensor Tjk’ from the global to the local coordinate system, i

\

v 1

;s is given by .

_ ) o

) Tjk = e (2.18) Y

. "

ﬁ wvhere e(J) = {n, s, t} is a set of basis vector forming the local coordinate ‘f

.(

Ii system, such that e(1)=n, e(2)=s, and e(3)=t. Vector n is defined as B

n = ( cosy, siny cosB, siny sinpg) (2.19) g

0

s is given by i

& :

8 = ( -siny, cosy cosB, cosy sinB) (2.20) N

! and t by Y

: )

t = (0, -sinB, cosB) (2.21) y

ég where v and B are defined in Fig. 2.3. :
If the local constitutive law is defined in the local coordinate system as

4

follows, &

}

;-: TR Gl (2.22) ]

i ij 7j ¢

m . . . .
wvhere K?j is the stiffness tensor. Then, in the global coordinate systenm,

(=2

the local constitutive law reads as follows,
nm nm ,nm .nm .nm
tl = Tli ij Tjk Sk (2.23)

2.3.2 Constitutive law for the packing
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Using the local constitutive law defined above, the overall
constitutive relationship of a packing of spheres can be derived.

Substituting for 8Em from Eq. 2.13 and multiplying by the position vector

rgm on both sides, Eq. 2.23 becomes

nm ,nm nm .nm _nm .nm _nm .
rq tl = rq Tli ij Tik rp <skp> (2.24)

Summing up on both sides of Eq. 2.24 and dividing by volume V, the
relationship between incremental stress and the incremental strain is

obtained as follows

<clq> = Clqkp <ekp> (2.25)
where

1 nm .nm ,nm .nm _nm
clqkp =7 ); % Ty Tys l(ij Tjk rp (2.26)

and the incremental stress is defined as
. 1 nm _nm
G > = L Lt Ty (2.27)
n m
It can be shown that the incremental stress and the incremental strain in

Eq. 2.26 are frame indifferent quantities, thus satisfying the principle of

material objectivity. For example, let Q be any orthogonal transformation

*
tensor from coordinate system X — X , such that

a ai i Ty = rj ij (2.28)
*
vhere t;m and rgm are in the transformed coordinate system. Then the

transformed incremental stress is given by

* *

nm nm
E % S (2.29)

implying that the incremental stress defined in Eq. 2.27 is a frame

L * t N
<o =Q <o Q =

<

indifferent quantity under any orthogonal transformation. Similarly the

incremental strain can also be shown to be a frame independent quantity.
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2.4 INCREMENT OF 'MEAN’ STRESS TENSOR AND INCREMENTAL STRESS

The increment of the "mean’ stress tensor is defined as
<bo; > = <oy > - <a‘i’j> | (2.30)
wvhere <oij> and <c?j> are the ’'mean’ stress tensors in the deformed and the
original configurations respectively. Clearly, the incremental stress
<&ij>, defined in Eq. 2.27, is not same as the increment of the ‘mean’
stress tensor. In order to express the constitutive equation in terms of
the increment of ’'mean’ stress tensor, the relation between the incremental
stress and the increment of the ’'mean’ stress tensors needs to be
established.

From Eq. 2.6, the ’'mean’ stress tensors in the deformed and the

original configurations respectively are given by

0 1 o 0
%; %; ti rj, and <aij> = —;; %; %; ti rj (2.31)

<aij> =

<

The superscript nm has been dropped in Eq. 2.31 for clarity. The contact
force ti and the position vector rj in the deformed configuration can be
expressed in terms of the contact force t? and the position vector r? in the

original configuration as follows

t, = ti + b (2.32)
o .
., = L, . 2.3
rJ rJ + By (2.33)

vhere the dot refers to the incremental change. The incremental change in
the position vector ij’ by definition, is given by

t. = <D.> r, (2.34)

J 1) )

where <Dij> is the Eulerian displacement gradient. Further, the Tr(D) is

defined as

Tr(D) = <Dnn> =1 - w (2.35)
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Substituting Eqs. 2.31, 2.32, and 2.33 into Eq. 2.30, using Egs. 2.34
and 2.35 and neglecting all the quadratic terms, the relation between the
increment of the ’'mean’ stress tensor <Aaij> and the incremental stress
tensor <&ij> is obtained as follows
<80,.> = €0,.> + <g, > <D _.> - <g,.> <D_ > (2.36)

ij 13 im mj ij nn

Eq. 2.36 represents the familiar relationship between the increment of
Cauchy stress <Aci.> and the increment of first Piola-Kirchoff stress <6ij>
(Truesdell and Noll 1965). If the symmetry of the incremental stress tensor
<&ij> is rendered explicit, Eq. 2.36 becomes
{g,.> = Kbo,.> - L [ o, > <D _.> + <o, > <D_.> ]+ .. <D_ > (2.37)

ij ij 2 im mj jm mi ij nn
Thus the constitutive equation can be written in terms of the increment of
the Cauchy stress tensor as follows

1

<Adij> = Cijkl <skl>+ 5[ <cim> <ij>+<ajm> <Dmi> ]— g, J<D ‘> (2.38)
For the case of small deformations the increment of the Cauchy stress can be
assumed to be same as increment of the first Piola-Kirchoff stress, that is
the second and the third terms on the right side of Eq. 2.37 are negligible
compared to the first term. In that case, Eq. 7.38 reads
<do,.> = C,, <ek1> (2.39)
wvhere Cijkl is same as defined in Eq. 2.26.
2.5 CONSTITUTIVE EQUATION FOR A CONTINUOUS SYSTEM

The constitutive equation discussed thus far is defined for the case

of a discrete distribution of the contact position vectors. However, for a

random packing, as the number of contacts becomes very large, the contact !
position vector distribution can be reasonably treated as continuous. A '&z
M
distribution function &(Q) of the contact position vectors can be defined éé?«N
Pu

such that

L) .F‘ wr o T

“w v,

’.v‘-r" TR
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. =

IQ E(®) d9 = 1 (2.40)

Thus the summation in Eq. 2.26 can be replaced by integration and the
constitutive tensor becomes

Clapk g J'Q £ (®) TR K, (D) T, () () &) dg (2.41)
vhere N is the total number of contacts in volume V, dQ = siny dy dB is the

differential solid angle associated with a unit sphere with 0<y<m and 0<B<2n

and §(Q) represents the distribution of the contact position vectors in

<.

space.
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Chapter 3

CONTACT LAV UNDER CYCLIC LOADING

THe force-displacement behavior at a contact significantly effects
the stress-strain behavior of a granular packing. The force-displacement
law of two non-conforming bodies in contact can be obtained from the Hertz-
Mindlin theory of frictional contacts. The normal and the tangential
stiffnesses based on this theory are presented. The assumptions of this

theory and their consequences on the contact law are discussed.

3.1 NORMAL CONTACT OF TWO NON-CONFORMING SOLIDS

3.1.1 Hertz theory

For two spheres of radii Ri and elastic properties Ei’ Gi and v

i
(i=1,2) the classical theory of Hertz relates the normal force N to the

relative approach a of the centres of the two contiguous spheres and the

radius a of the circular contact area by the following equations (Johnson

1985):
2
oo 2N - (3.1)
16R E
ad. MR (3.2)
4
wvhere
1 1 1
—_— e (3.3)
R R, * R,
(1-v,2)  (1-v,%)
Lot 2 (3.4)
E E, E,
2
“ -2 (3.5)

As can be seen from Eq. 3.1,

LIe " ¥ NG W Lo T
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The incremental stiffness is defined as
i 4
anN ,
kn = 3 = 2E’'a (3.7)

from Eq. 3.6 using Eq. 3.5.

For two cylinders in contact the normal stiffness at contacts is
based on the Hertz-Mindlin theory of frictional contacts with modifications
for conditions of local yielding at contacts (Chang and Misra 1988a). The
normal contact stiffnesses is given by

1 1l - v

= ——=—— | 2 1n (2R/a) - 1 (3.8)
- ]

vhere a= (2 (1 - VY NR/ n G)l/z, G is an equivalent shear modulus less

than the elastic shear modulus, v is the Poisson’s ratio, R is the

equivalent radius of the cylinders.

3.1.2 Non-Hertzian theory
The assumptions and restrictions made in the Hertz theory of elastic
contact are parabolic profiles, frictionless surfaces and elastic half space

theory. However the real situation is much more complicated. For example,

~ 2 OB =B TR

vhen two non-conforming elastic bodies having continuous profiles are

pressed into contact, the pressure distribution between them is not

gy s

¥
s determined uniquely by the profiles of the bodies within the contact area.
R Two further conditions have to be satisfied: (1) that the interface should
¥ 4
; o not carry any tension and (2) that the surfaces should not interfere outside
‘ .
) {b the contact area.
R
U Friction at the interface of two non-conforming bodies brought into
4
1
)

normal contact plays a part only if the elastic constants of the two

materials are different. The mutual contact pressure produces tangential

B - =

j &
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displacements at the interface as well as normal compression. If the

LT T et e e

materials of the two solids are dissimilar, the tangential displacements

-

will, in general be different so that slip will take place. Such slip will

-~

SR

be opposed by friction and may, to some extent, be prevented. Therefore a .
central region where the surfaces stick together and regions of slip towards

the edge of contact may be expected. If the coefficient of limiting v

.
friction was sufficiently high slip may be prevented entirely. ¢

Vhen the limits of elastic behavior have been exceeded and plastic

-

»

flow has begun, the plastic zone is fully contained by the surrounding

e R B BE BB I 'w

e

material which is still elastic. For bodies having smooth profiles, e.g.
cylinders or spheres, the plastic zone lies beneath the surface. In these

circumstances the material displaced is accommodated by an elastic expansion »

B KX

of the surrounding solid. The resulting deformations are of approximately
the same magnitude as the elastic deformations. However the results of the 4

Hertzian theory needs to be corrected for the yielding.

T~ -

Eaegy

As the load is increased further, the plastic zone breaks out to the

M

free surface and the displaced material is free to escape by plastic flow to
the sides. This is the ’unconstrained’ mode of deformation analysed by the
theory of rigid-plastic solids. The plastic zone would be expected to break

out to the surface and the unconstrained mode become possible when the

22 R S W

pressure at the contact reaches the value given by the rigid-plastic theory.

s yt

ﬁ: The contact behavior acounting for these Hertzian restrictions and \
i

s assumptions have been primarily studied by numerical techniques. No simple ;

el

o

¢ closed-form solutions of contact deformations or stiffness for non-Hertzian s
!

gg contacts exit in lietrature to the authors knowledge. %
)
4
4

. 'l‘

ﬁ? 3.2 CYCLIC TANGENTIAL LOADING ON CONTACT
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For a constant normal force, the effect of a tangential force T < uN

is to cause ’'slip’ over part of the contact area. Slip is initiated at the
circumference of the circular contact area and, as T increases, an annular
area of slip develops spreading radially inwards until, vhen T = uN, rigid
body sliding occurs. If the tangential force is reduced then the slip in
the opposite direction spreads radially inwards from the perimeter of the
contact area. Thus, all load reversals cause slip reversals that propagates
radially inwvards from the perimeter of the contact area, instead of receding
the existing slip annulus. Consequently the tangential stiffness is
dependent on the loading history.

The tangential stiffness is also dependent on the magnitude of the
normal force. Fig. 3.1 shows schematically, the loading, unloading and
reloading behavior for values of normal force at the contact. Mindlin and
Deresiewicz (1953) have identified several loading sequences involving
variations of both normal and tangential forces and developed theoretical
solutions for the tangential stiffness.

A general procedure based on Mindlin and Deresiewicz (1953) work has
been reported by Thornton and Randall (1987). The procedure is to update
the normal force and contact area radius followed by calculating AT using
the nev values of N and a. By reanalysing the loading cases considered by
Mindlin and Deresiewicz (1953) it can be shown that for loading, unloading

and reloading, the tangential incremental displacement may be expressed as

.4 + AT—LIAN]
As'BGa [—uAN+ 9 (3.9)
except when

u AN . ,
a8 < 8C a and sign (48) = sign (AaN) (3.10)
From Eq. 3.9
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Fig. 3.1 Tangential force versus displacement at a contact.
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4T = 8G a © 48 + uaN (1-6) (3.11) Y,

vhere

SR &%
EC )

(2 - \’1) (2 - \’2) :

L. '

‘:1‘ il Gl + Gz (3.12) :5.
XS 4
o0 - 1 - Q—u“-%‘& (loading) (3.13) i

* "]

53 93 = 1 -(T -T+ 2utN) (unloading) (3.14) ;
2 2 uN Wt
** "

' 93 J1-a =T + utN) (reloading) (3.15) {
'Ql. 2 uN 0

*

and the negative sign in Eq. 3.11 is only evoked during unloading, T and
*k

T are defined in Fig 3.1. For a current state given by point 1 in Fig 3.1 4
(during loading, unloading, or reloading) a tangential incremental

displacement corresponding to

. “
|as| = g—clﬂal vith &N > 0 (3.16)

e TR =R

will result in a new state given by point 2 on the curve corresponding to

the nev value of N. Larger values of |48] will result in a state farther

4
-

along the curve such as point 3. A problem occurs if the conditions given

m’ﬂ.—

=<

in Eq. 3.10 is satisfied, since point 2 is not reached and the new state !
¢
does not lie on the curve corresponding to the new value of N. This case X
a can be solved by setting 8=1 in Eq. 3.11 until BGaId§ > uIAN. ‘:'r
!
‘(
For two cylinders in contact the shear stiffness at contacts based on }
Y
§§ the Hertz-Mindlin theory of frictional contacts with modifications for 2
gE conditions of local yielding at contacts (Mindlin 1949, Chang and Misra 3
\ 0
..
1988a) is given by Q
\
: 1 1 -1/2 W
& = 7 Y[l - T/(tan ¢ )] (3.17) "
s n

G vhere ¢u is the friction angle between the two particles, N and T are the 't
&

5
o normal and shear force at the contact respectively, and ¥ is a constant. :
d

v

L
'3
-3

§
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Chapter 4

FABRIC TENSOR AND STIFFNESS PROPERTIES OF RANDOM PACKINGS

Among the significant geometrical features that influence the stress-
strain behavior of a granular assembly are the void ratio, the coordination
number and the spatial distribution of the vectors joining the centroid of
the particle to the contact point on the surface called the contact position
vectors. For convenience the distribution function of the contact position
vectors can be represented in a tensorial form. The distribution function
is related to the ’'fabric tensor’ of the granular packing. Using this
distribution function and assuming a contact force-displacement law the
stiffness constants for anisotropic packings of spheres and discs can be

obtained (Chang and Misra 1988c, 1988d).

4.1 GEOMETRICAL PROPERTIES OF THE PACKING STRUCTURE

Geometrical properties of granular packings have been of interest in
various areas of engineering. Various efforts have been made to identify
the geometrical characteristics of importance in the study of granular media
in general (Gray 1968, Shahinpoor 1983, Oda et. al. 1982). Studies suggest
that among the geometrical properties of granular packings that influence
the mechanical behavior are the average coordination number, the void ratio,

and the distribution of the contact position vectors in space.

4.1.1 Coordination number and void ratio
For a granular assembly, the coordination number is defined as the
number of contact points per particle. The average coordination number of a

random assembly is a useful measure of the closeness of the packing or the
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P

void ratio. The void ratio is defined as the ratio of the volume of voids

) with the volume of solids in a packing. The total number of contacts N in a

..
-

given volume V of a granular packing can be obtained from the knowledge of
the void ratio e, the coordination number m and the particle size. For a
packing of equal sized particles, the ratio of number of contacts to the
volume of the packing, g, can be expressed as follows

gm (for spheres); % = —= 2 (for discs) (4.1)
4n p7(1 + e)

R ei(l + e)
vhere p is the particle radius.

N
V=

Further, the correlation between the coordination number and the void

ratio of the packing have been studied experimentally by several

=E X SEE 2PN 2%

investigators (Oda et. al. 1982, Yanagisawa 1983). The relationship between

-
s

m and e have been experimentally found for lead and glass balls by Smith,

Foote and Busang (1929), Filep (1936), Field (1963), and 0da (1977).

. ,.,‘,,
PR ot il
-

Experimental results are also obtained by Marsal (1973) for rockfill

-

materials and Yanagisawa (1983) for gravels with round and flat shapes.

" -

D‘Jg

Some of the empirical equations are listed as follows:

-

5 1. Yanagisawa (1983) m = 3.183(2'469_e) (4.2)
- . - 10.726
5 Q& 2. Smith, et.al. (1929) m= 26.486 - —?T—:—ET (4.3)

-
o
[

3. Filep (1936) fo= 2l (4.4)

By A
=

~ 12
4, Field(1963) m = SrS) (4.3)

These four empirical equations are plotted in Fig. 4.1 and compared

Rl &

]
x

; with experimental data. Experimental results from Oda et. al. (1982)

v

o
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suggests that the relation between the coordination number and the void

-

ratio is independent of grain size distribution.

3

4.1.2 PFabric tensor

Another important measure of the packing structure of granular media

- e o e W

is a second order symmetric tensor, termed the 'fabric tensor’, that has

been introduced by some investigators (Ref. Satake 1982, 0Oda et. al. 1982,

Cowin 1985). More general form of the 'fabric tensor’ has been introduced b

e S

by Kanatani (1984). In general, the ’'fabric tensor’ represents the average

of the tensor product of the observed directional data, such as contact

T

position vectors. The contact position vector is defined as the vector

-~ -

joining the centroid of a particle to a contact point (representing contact

R B

with a neighboring particle) on its surface (” and P in Fig. 2.2). For

o
> ]

(4

packings of spherical particles the contact position vector is same as the E

contact normal vector. If only the unit vector n in the direction of the v

ii contact normal vector is considered then, in general, the ’fabric tensor’ i
53 can be defined as a tensor of rank m given by }
Niliz"'i = JQ nilniz...nim E(v,B) d? = <niln12...nim> (4.6a) v

H! where < > denotes the ensemble average of the m observed contact normals ?
Ny Ny ey R E(v,B) is the density function of the directional :

1

distribution of the contact normals, and dQ = siny dy dB is the differential

2 m .

=

;E solid angle associated with a unit sphere with 0<y<n and 0<B<2n (v and B are
3

defined in Fig. 2.3), such that,

¥,
N 1 Jz I IR E(vy,B) siny dy dB (4.6b)
M 2"' 1 Ly .

m

The ’fabric tensor’ defined here is useful in defining the tensorial form of

the distribution density function &(y,8). The relationship between the N
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'fabric tensor’ and the density function &(y,B) will be discussed in the
next section.
4.1.3 Distribution density of contact normals

The empirical distribution of the contact normals in space, for a
random granular system, is in general expected to be discrete and random.
For continuum modelling of granular packings, it is useful to represent this
empirical discrete distribution of contact normals by a smooth density
function. Such a directional distribution, in three dimensions, can be

expressed as a spherical harmonics expansion given by
1 =
KB = 5 [L+ k};z{ 30 B (cosT)

k
+ 3;1PE(cosv) [akmcos mB8 + bkmsin mB] }]' 4.7

vhere y and B are defined in Fig. 2.3. Here, El denotes summation with
respect to even indices only, Pk(cosv) is the kth Legendre polynomial,
PE(COSY) is the associated Legendre function and a0’ 3’ and bkm are
parameters. In order to ensure that the density function §(v,B) is centro-
symmetric, i.e. &(vy,B) = &(n+y,B+n), only the even harmonics are admissible.
It is evident that the first term, i.e. 1, in the expansion, Eq. 4.7,
represents a sphere and the subsequent terms can be regarded as a function
defined on the surface of the sphere. Further, since the Legendre
polynomials and the associated Legendre functions are orthogonal to 1, it
follows that the Eq. 4.7 satisfies the identity
[ ey ae-1 (4.8)
Q
signifying it is a density function.

Similarly, in two dimensions, the directional distribution can be

expanded in form of a Fourier series given by

A
AT




X
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[1 + Y a, cos kO + bk sin k8 ] (4.9)
k=2 K

Due to the centro-symmetric nature of the distribution, that is E(8) =

al”

Ee) =

E(6+n), only the even terms appear. Clearly, Eq. 4.9 also satisfies the

identity J £(9) do = 1.
]

The expression for the distribution of contact normals, i.e. Eq. 4.7

or 4.9, can be alternatively written as a cartesian tensor equation

XA A B2 N B2

1

E(n) = in [1 + Qijninj + Qijklninjnknl Ao ] (4.10a)
! or
: éﬁ 1

E(n) = T [1 + ’ijninj + Qijklninjnknl e ] (4.10b)

2% wvhich represents a polynomial in terms of direction cosines of n. In Eq.
8 4.10, ’i i is a coefficient tensor of rank m of appropriate choice such
{ 1....m
1 3
; ; that Eq. 4.10 expands to Eq. 4.7 or Eq. 4.9. It is evident that the
F) 'e
. coefficient tensor ’i ; can be expressed in terms of the coefficients of
10001

- v -

Eq. 4.7 or 4.9.

Since Eq. 4.7 represents a spherical harmonics expansion, Kanatani

& (1984) has shown that the coefficient tensor ¢i i is a traceless tensor.
10 in
: g! He has further shown that the coefficient tensor Qi ., can be determined
; 1o ig
) .
) @ using the 'fabric tensor’ Ni i and hence is directly related to the
} » 1°"""m
packing structure of the assembly. The 'fabric tensor’ Ni i i is
; Eg pigee-ip
D

b3

b related to the coefficient tensor . i For example, for m=2 the
(igee-ip

coefficient tensor Qij is related to ’'fabric tensor’ Nij as

-

.
T

15 1 .
’ij = 5 [ Nij -3 8ij ] (for spheres):

A

1 o
¢ij = 4 [ Nij -7 aij ] (for discs) (4.11)

- o
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Mathematical details on the spherical harmonics expansion are discussed in

(Butkov 1968, Kanatani 1984).

4.2 STIFFNESS CONSTANTS FOR RANDOM PACKINGS

Using the general expression of the constitutive tensor for packings
of given by Eq. 2.41, the density function of the form given by Eq. 4.7 or
4.9 and assuming a local constitutive law, the stiffness constants for a
random assembly of any packing structure can be obtained.
4.2.1 Constant contact stiffness

Closed form solutions for the stiffness constants are derived by
assuming that all contacts in the assembly have the same mechanical property
independent of the stress state. A simple diagonal form of the local
constitutive matrix Kij relating the relative displacement vector d.=(dn,

ds, dt) and the incremental force vector fi=(fn, £, ft) (or dj=(dn, ds) and

S

£i=(f , fs) in two dimensions) is assumed, such that, K11= Kn,

n Kp=Kq3=Kg

and Kij= 0 (i#j). Kn and Ks are the normal and the shear stiffness
respectively at the contact. It is assumed that there is no coupling
between the shear and the normal forces at the contact such that the off
diagonal terms of the local constitutive matrix are zero (Kij=0 for i#j).
4.2.1.1 Packings of equal spheses

For the simplicity of further derivation, a truncated form of the
expansion in Eq. 4.7. consisting of second order terms is used. The
Legendre polynomial of degree 2, i.e. Pz(cosv), is given by (Abramowitz and
Stegun 1965)
Pz(cosv) = % (3c052Y -1 (4.12)
The associated Legendre function Pg(cosv) can be ébtained from the Rodrigues

formula (Abramowitz and Stegun 1965)
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2.m/2 k+m

PRy = LX) d— o - nk (4.13)

27 k! dx
For k=2 and m=2, Eq. 4.13 yields
P2(cosy) = 3 sin’y (4.14)
Thus the truncated expansion is given as

1 1
E(v,B) = In [1 *+ 7 29 (3 cos2y + 1) +

3 sinzv (a22c0528 + bzzsinZB) ] (4.15)
Alternatively, writing Eq. 4.15 as a cartesian tensor equation
1

&(n) = i [1 + Qijninj ] (4.16)
wvhere n = (cosy, siny cosB, siny sinB), and the coefficient tensor °i' is
given by

3,0 0 0

1
[éij] = 0 -5+ 3a22 3b22 (4.17)
1
0 333 "3 3 - 33y,

The first term in Eq. 4.16, clearly, represents the isotropic portion of the

distribution while the second term represents the anisotropic part. For

brevity, the isotropic and the anistropic parts can be combined as follows
1 1

&n) = = [(sij + 4 nn, ] - o [Fij n;n, ] (4.18)

vhere Fij is a generalized ’fabric tensor’ that characterizes the

distribution function of the normal vectors at the contacts. Substituting

Eq. 4.18 into Eq. 2.41, the constitutive tensor becomes

2 NN

r’' N ,
C1qpk TR Ié J6 nq Tli Kij Tjk np Frs nrnS siny dvy dB (4.19)

Taking into account the symmetry of the incremental stress and strain
tensors, the stress-strain relationship, equivalent to Eq. 4.19, can be
expressed in Voigt’s notation as follows,
<¢ > =C <E > (4.20)
m mn n

vwhere
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B e g
<c’m> = (azz’ %y? Txx’ %zy’ zx’ cxy) "._
and r
! 0
<en> = (ezz, eyy, exx, Zszy, ?.szx, Zexy) ::
g The stiffness constants Cmn for a packing fabric of a an order spherical :‘,
2
expansion form (Eq. 4.15) are given as .
g 2 [ 2a 3
4 r’ N 20 .
C11= 5V | (3!(n + ZKS) + 7 (6!(n + Ks) ] (4.21) ‘:
@ 2 [ a 6a )
r- N 20 22
C22= 15V _(3Kn+ ZKS) - 3 (6Kn+ Ks) + 7 (6Kn+ KS)] (4.22) Y
ﬁ 3
"
2 [ a 6a A
r’ N 20 22 2
E C33- 15 v _(3Kn+ ZKS) - 7 (6Kn+ KS) - 3 (6Kn+ KS)] (4.23) %
v 2 [ a 6a ] G
r N 20 22 N
g C12= 15V _(Kn_ Ks) + 7 (Kn- KS) + 3 (Kn— Ks)- (4.24) ::
.
i 2 [ a 6a 1
N 20 22 5
€137= 5V |Kam K + =7 Ky K - 57— (K- K | (4.25) ‘;
; |
2 2a "
r® N 20 B
» €37 5v | ¥ - K -7 Ky - K ] (4.26) .
~ ¢
(]
- 2 N 250 3 62,, 3] 3
{ - = .
fC; Cos™ Fo v [(Kp+ 3K + —5— (K + TR + —F— (K + 7 K) (4.27) 3
~y v
o 2 [ a 6a ) Oy
4 _ N 20 3 22 3, '
&, CSS- 0V _(ZKn+ 3Ks) + 3 (ZKn+ 3 K.) - 7 (ZKn+ 3 Ks)‘ (4.28) :
& 2 ] 2a A i
r” N 20 3
Cog= 3oV~ | (K + K - —5— (K + FK) (4.29) ..:
g W
v [ 1255, X
- L “l
% %= 0 v | 77 Ka - K (4.30) .
¢ ™
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12b,, 1 ]
Ca= Tov | 7 K, + 7K (4.31)
)
N 2 " 12b
2N 22 1
C36= 30v | 77 Kt 7K ] (4.32)
2 . [12b
r° N 22 3
Cas= 30v L~ 7 Ky + 7K ] (4.33)

The other elements of the stiffness matrix Cmn are zeros. The ratio of
number of contacts to the volume of the packing, %, is expressed in terms of
the coordination number m and void ratio e by Eq. 4.1.
4.2.1.2 Packings of equal disks

For simplicity, a truncated form of the Fourier expansion in Eq. 4.9
with terms upto fourth order are used. The truncated expansion is given as

1 . .

£0) = o [1 + a, cos20 + b, sin20 + a, cos4® + b, sinkd ] (4.34)
Alternatively, Eq. 4.34 can be written as a cartesian tensor equation

| ]
En) = in 1+ Qijninj + ¢ijklninjnkn1 (4.35)

vhere n = (cos®, sin®).

xm B S T B PR X5l P

e

Taking into account the symmetry of the incremental stress and strain

tensors, the stress-strain relationship, equivalent to Eq. 4.19, can be

=

expressed in Voigt’s notation as follows,

o . .
& <am> = Cmn <£n> (4.36)
where <am> = (ayy’ ! cyx) and <sn> = (eyy’ exx’ Zeyx).
) Eg The stiffness constants C__ are given as
e mn

n
C11= m [ (6Kn + ZKS) + Aaz Kn a8, (Kn - KS) ] (4.37)

;|

%

n
Cro® B [ (6K + 2K) - 4ay K+ a, (K -K) ] (4.38)
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n

C12® 87 (T+e) [ 2 (K, - K -3, (K -K) ] (4.39)
_ )

C33= TEE—TTIET i 4 (Kn + Ks) - Zaa (Kn - KS) ] . (4.40)
. r

C13= T6n civey L 22 Ky + by (K - K J (4.41)
- i

C23= m I 2b2 (Kn + Ks) - b[‘ Kn ] (4.42)

It is noted that for the case of isotropic packing structure, i.e.
a2=34=b2=b4=0, Eqs. 4.37-4.42 yield similar results as Bathurst and
Rothenburg (1987).

4.2.2 Hertzian-Mindlin Contact

Under the condition for which the shear force does not exceed the
frictional strength at a contact, the local constitutive law can also be
defined based on frictional Hertzian-Mindlin contact. The contact
stiffnesses, Kn and KS, obtained from the Hertz-Mindlin theory for
frictional contacts (Mindlin and Deresiewicz 1953) are given in Chapter 3.

If, instead of a linear local constitutive law, a non-linear
Hertzian-Mindlin contact law is assumed, the expressions of Cmn become very
complex and the close form solutions can only be obtained for the case of
statistically isotropic packing under initial isotropic stress condition.

For a statistically isotropic packing, the contact force vector £,

under initial isotropic stress (cij= Psij), is the same for all contacts,

given by
3VP
fn =N fs = ft =0 (4.43)
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Thus using Eqs. 4.21-4.33 with a20=a22=b22=0, the Poisson’s ratio and the
I Young’s modulus for the packing are given as
« s (4.44
l Viso = 7 (5-3v) <44
2
_ _4 " (5-4v) [ ]1/3[ GN ]2/3
Eiso = 30 (53w | P -V (4.45)

For other packings and initial loading conditions other than isotropic, the

7.

expressions become very complex and a numerical approach to the solutions is

-

more tractable.

4.3 TYPES OF MATERIAL SYMMETRY ‘\
Due to the different packing structure, a granular assembly may,
conceivably, exhibit different types of material symmetries. The forms of

the stiffness matrix for various types of material symmetries are shown in !

=2 R A

Table 4.1 (Nye 1957). Evidently, the various types of material symmetries

can be represented by an appropriate choice of the ’fabric tensor’ F

FRERY

ij

Along with the forms of stiffness matrix for the different material

2

symmetries the corresponding 'fabric tensor’ Fij are presented in Table 1. N

The packing structure of a granular packing with orthotropic material

7

[}
t

symmetry non-coincident with the stress axes can be represented by a second

A e~y

fﬁ rank symmetric fabric tensor with three non-zero parameters 30" 39° and

. b22' A granular packing in this case will have 13 independent non-zero ;

§§ stiffness constants given by Eqs. 4.21 to 4.33. It is noted that for this {
material the normal stresses a0 oyy’ Tex 3re coupled with the shear strain 3

€ . :
Xy

Granular packings with orthotropic material symmetry can be

&S B

represented by a diagonal second rank fabric tensor with two non-zero :

parameters 250 and ay,- Orthotropic material is characterized by symmetry X

-
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TABLE - 1 Forms of stiffness matrices C.n and the fabric tensor Pij

for various material symmetries

Stiffness Matrix C PFabric tensor F,.
=n ij
Orthotropic with
non-coincident stress axes
*x * K * 1 1 «+ a,, 0 0
x % *
* . * 0 1 - 7 350 * 3a22 3b22
symm * * 1
o 0 3by9 1 - 3535 -3y,
Orthotropic
* * * 1 +a 0 0
. % . 20
* . . 0 1 - 7 350 * 3a22 0
symm * . . 1
* ; 0 0 1 - 7 30 " 3a22
Tetragonal
*  ——k . . . 1 + a5, 0 0
*\\\: . . .
oy . . . 0 1+ a20 0
~ 0 0 1- 2a
x 20
Transverse isotropic
*  ——k 1l +a 0 0
t\\\: 20 .
symn * . 0 1 - 7 a20 0
~ 1
* . 0 0 1 - 7 35
o
Isotropic
*_ k——k
\‘*\\\l 1 0 0
* . . 0 1 0
symm . 0 0 1
u\\o .
\\‘o

1
. - zero components, * - non-zero components, O - 7 (C *—*k _ equal

22" Ca3)
componen ts
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about three mutually orthogonal planes. The stiffness matrix of materials
wvith orthotropic symmetry is represented by 9 independent constants. For
orthotropic materials the normal stresses are not coupled with the shear
strains and the vice versa.

Granular packings with tetragonal material symmetry have 6
independent stiffness constants. Tetragonal symmetry is characterized by a
an axis of symmetry. If the parameters defining the fabric tensor Fi' vere
chosen such that a0 = 2a22 and b22=0, then packings with tetragonal
symmetry can be represented.

In addition to possessing an axis of symmetry, certain granular

assemblies, have an additional condition on the stiffness constants, that is

1 : -
C66 =3 (C22 - C23). The number of independent constants characterizing the

stiffness matrix for such packings are thus reduced to 5. This type of
material symmetry is termed transverse isotropic symmetry. The fabric
tensor for the transverse isotropic material can be represented by choosing

=b, ,=0.

872%22

If the fabric tensor is chosen such that a20=a22=b22=0, then packings
with isotropic material properties can be represented. It is noted that the
stiffness constants for packings with different material symmetry can be

obtained from Eqs. 4.21 to 4.33 by using appropriate values of a, and

0’ 322
b

22
4.4 DISCUSSION

To demonstrate the effect of packing anisotropy on the mechanical
properties of random packings, parametric studies are performed for the
statistically isotropic, transverse isofrropic and orthotropic packings.

Fig. 4.2 shows the density functions &(n) of the contact normal vectors for

s ""'f\"‘.t’é‘\h_itf'}'i’ H !.r;"r,l.“.\""i"m"
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the monoclinic, the orthotropic and the transverse isotropic packings.
Three sections of the density function, along x=0, y=0, and z=0 planes

respectively, are plotted in Fig. 4.2. The following values of the

parameters are used for this plot: 3,0= 0.8, a22=b22=0 for transverse

isotropic packing, 350" 0.2, a22=0.25, b22=0 for orthotropic packing, and
a,9= 0.2, a22=0.25, b22=0.1 for monoclinic packing.

The solutions are computed based on Eqs. 4.21 to 4.33 using the
following values for the parameters: n =9, e = 0.57, r=0.01 in., and Kn=
3800 psi. Fig. 4.3 shows the Young’s modulus and the Poisson’s ratio

plotted against the ratio KS/Kn (the shear stiffness KS to the normal

®E BB OF A B OE B TR

stiffness Kn) for statistically isotropic packing. As expected, the Young’s
modulus increases and the Poisson’s ratio decreases with the ratio Ks/Kn.
The maximum value for the Poisson’s ratio is 0.25 wvhen the ratio KS/Kn is

zero for perfectly smooth spheres with no tangential interactions.

. 0%

Figs. 4.4, 4.5 and 4.6 show the variation of the Young's moduli, the

£

Poisson’s ratios, and the shear moduli, respectively, with the ratio KS/Kn

for the transverse isotropic and the orthotropic packings. The Young's

moduli E

= i n’ i =V h
<X Eyy and Ezz’ the two Poisson’s ratios Vo 2y and vxy’ and the

shear moduli G__=G__ and G__ for the transverse isotropic are computed for
zZx zy Xy

the parameter a20=0.8. It is noted that the shear modulus Gx can be

expressed in terms of Exx and “xy’ thus there are only 5 independent

constants for the transverse isotropic packing. The three Young's moduli

, , {0 v N
Exx’ Eyy and Ezz’ the three Poisson’s ratio 2%’ V2 and . and the three

shear moduli G__, G__ and G__ for the orthotropic packings are plotted for
zx’ “zy Xy

U
'
Qﬁ the value of the parameter a20=0.2 and parameter a22=0.25.
- To show the effect of degree of anisotropy on the mechanical
Y

roperties, the ratios of Young’s moduli for transverse isotropic packing to
prop g pic p
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the Young’s modulus for isotropic packing are plotted against the parameter

) 350 in Fig. 4.7. The ratios of the Poisson’s ratios for the two packings
are also shown in Fig. 4.7. Clearly the more anisotropic packing structure
'
X has a more anisotropic mechanical properties.
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Chapter 5

EXPERIMENTAL STUDY ON ROD ASSEMBLIES %

’

§

{

B :
Experimental tests were performed to provide a database for the H,

§§ verification of the developed theory. Experiments were performed to obtain )
. ¥

stress-strain response of packings with regular and random structures. H

I ‘(‘
ég Specifically of interest was the directional dependence of the stiffness 3

properties of the packings. Details of the experimental setup are presented

in Xue 1988.

5.1 APPARATUS
The apparatus used in this study consists of a loading frame composed ¢
of 4 rigid aluminium plates 1/2" thick and 2" high. The maximum size of rods ¢

assembly that can be placed in the loading frame is 8" by 8" in dimension.

Each rod of assembly is placed vertically, resting on a glass table top ‘§

(shown in Fig. 5.1). The frame is so designed that it can be compressed g

independently in X and Y directions. The box can also be made to swing about b}

Y-axis, hence it can serve as a directional shear box. i;

, The loading is applied using a set of push-pull type pneumatic ;
gg cylinders (or pistons) controlled by regulators with air pressure gages ZE
iﬁ attached. Cylinders can be pulled or pushed to apply compressive forces and v
= shear forces to this box with desired stress conditions, such as: isotropic &'

Al o
& -

compression, biaxial compression, and shear loading with a controlled

rotation of principal stress axis. Five dial gages that read to 0.0001" are

L

attached (see Fig. 5.1) to monitor deformations. y

oA

5.2 SPECIMENS AND MEASUREMENTS
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Fig. 5.1 The directional shear box.
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Six regular and two random packings have been investigated. Samples

-
-]

of approximately 300 aluminum cylinders, of 2 in. high, are placed randomly
- or in accordance with a given regular packing arrangement.

Regular packing structires selected in this study consist of four
packings of equal sized cylinders and two packings of multi-sized cylinders
as shown in Fig. 5.2. For packing A, B, C and D, the diameter of the
cylinders used is 0.5 inch. For packing E, the diameters of the cylinders
used are 0.5 inch and 0.25 inch, and for packing F, 0.75 inch and 0.5 inch.
Two types of random packings are used, namely one sized packing made of 271

rods of 0.5 in. diameter and two sized packing made of 229 rods of 0.5 in.

R B 2R RS

diameter and 190 rods of 0.25 in. diameter.

Strains of the rods assembly is obtained from the deformation of the

",

box measured from the attached 5 dial gages. The thickness of the frame
plates is designed to be large enough such that the bending deflection of

the loading frame is insignificant.

| gt

-

2 Wik 22X

™ o

Stresses applied on the rods sample are calculated from the readings

¥,
: of the pressure gages connected to the pneumatic cylinders. Since the

X

]

actual forces transmitted to the rods assembly are different from those

-

. directly calculated from pressure gages due to friction loses in the systenm,

-

-
o

calibration was made to account for the friction loses in the piston of the

é PO pneumatic cylinders and the friction loses between the loading frame and the
y ) glass plate. In addition, the stress madnitude applied to the assembly was
t
1IIPRY
> $Q selected to be much larger than the friction between rods and the smoothened
g glass plate so that the effect of friction is expected to be insignificant.
¥l
; g% Photographs of the assembly packing were taken for the random
K,
3 w0 assembly. The rods are painted black on the top and theitv centers are
/
.2
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marked so that, from photographs, the coordinates of the center point of

each circle can be digitizd to give the contact normal distribution.

5.3 STRESS PATHS

R

The stress path applied to the sample is a shear test with fixed

&3 5= -l

principal stress axis as illustrated in Fig. 5.3 on a normalized deviatoric

stress vs shear stress plot. All tests start with isotropic initial stress

(&

state, represented by the point of origin in Fig. 5.3. An initial isotropic

¢
gﬁ stress of 2.5 psi is used for all the tests. Then the incremental stress of ;
)
0.5 psi is applied to the sample in a direction with an angle « inclined :

>
gf from Y-axis such that the principal stress axis is rotated by an angle of «, i
with the major principal stress 9= 3.0 psi and the minor principal stress 3
Eg o3=2.5 psi. For each packing, tests were conducted for the following « ;
\
. angles (0°%, 15°, 22.5°%, 30.0°, 37.5°, and 45.0°). "
y 1
b
ﬁ 5.4 TEST DEVIATION )

Each test was repeated several times to evaluate the test

!l variability. The coefficients of variations of the measured strains € sy !
and shear strain exy are found to be about 20%, 18% and 15% for € € and s
g? sxy respectively. The scatter may be caused by many factors. In addition ¢
;; to the factors associated with loading system and apparatus, one factor 5
% ()
- identified is that the rods are not perfectly circular and equal in :
2; diameter. Thus identical samples are not possible tn be reconstructed. ‘
t
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Chapter 6 -

(]

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS :
(]

g

Verification of the theory is carried out by comparing the !

theoretical computations with the measured experimental results. y

'i:

Comparisons are made with the experimental results from the tests on rod 5

L]

"(

assemblies in directional shear box. Comparisons are also made with test h

results from glass balls assembly in a resonant column device and tests on o

sands under low amplitude waves. Response under different initial stress

- -

6.1 COMPARISON VITH EXPERIMENTS ON ROD ASSEMBLIES

- o o - -
(St

6.1.1 Regular packings

T -

To compare with the experimental results, the response of the six
regular packings (shown Fig. 5.2) under the loading conditions discussed

above were computed using the theory. The values of the constants used for

e - e -

theoretical computations in this work are: G = 15000 psi (105000 kN/mz), ¥ =

BB conditions are also computed and compared with measured trends.
E

2.5, v=0.1, and ¢ = 15°. : ;
]
v The apparent deformation modulus of a packing is defined by '$
L]
R Ao |
E = z (6.1)
g ea \
& :
~ wvhere Aca is the incremental stress in the direction a, €, is the measured 2
: incremental normal strain in the direction «, calculated from measured .
# .
1
deformation of test box. The apparent Poisson’s ratio can be given by
U = —8-—_ (6.2) 9
a+90 ‘ll
‘
o .

s A
| W
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vhere €090 is the normal strain measured in the direction perpendicular to
that of €, Normal strains €, and €,.90 &Fe not necessary the principal
strains.

Figs. 6.1 and 6.2 show the apparent moduli and apparent Poisson’s
ratio for the six packings respectively. The measured results are compared
with the predicted theoretical results for various values of « on polar
coordinates.

Packing A (square packing) is most stiff when loaded in the direction
of Y-axis. When it is loaded in the diagonal direction (i.e., as a becomes
to 45 degree) the modulus is minimum while the Poisson’s ratio is maximum.
Packing B (hexagonal packing) behaves isotropically. Both moduli and
Poisson’s ratio are equal in all directions. Packing C, is a mixture of
square packing and hexagonal packing. Remarkably the modulus and Poisson’s
ratio of packing C are average of those of packing A and packing B. Packing
D shows the similar isotropic behavior as that of packing B, however, the
magnitude of the modulus of packing D is much smaller than packing B. Both
packing E and F are two-sized packings. Their moduli and Poisson’s ratios
are anisotropic. More detailed comparisons are included in Chang and Misra
1988a, Chang, Misra and Xue 1988.

6.1.2 Random packings

Two types of random packings are used for the experiments. Random
packing A is made of one size rods with total number of contacts N=1372, the
void ratio e=0.179, and the coordination number m=5.06. Random packing B
consists of rods of two different sizes with total number of contact N=1991,
the void ratio e=0.179, and the coordination number m=4.75. The
distribution of the branch vectors. vector joining the centroids of two

particles in contact, is shown in Figs. 6.3 and 6.4 for the two packings.
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packings.
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Clearly the branch vector is two times the contact position vector for the

case of one size packings.
To compare with the experimental results, three sets of values of the
constants to represent stiff, soft and average response were used. The

values of the constants used are: G = 40000 psi (280000 kN/mZ), ¥ =1.0 for

O B =

-~

stiff packing; G = 15000 psi (105000 kN/mz), Y = 2.5 for soft packing; and é

P A

= 25000 psi (175000 kN/mz), ¥ = 2.0 for the best fit of the experimental

results. For all the computations the value of v is 0.1, and ¢u is 15°.

Lh A

The theoretical predictions and the measured strains are shown in
Figs. 6.5 and 6.6 plotted against the direction of the principal stress axis
«. The measured data is completely bounded within the predicted response.
The theory gives reasonable predictions of the trend. Measured strain € x
shows more scatter since it is very small in magnitude and therefore

expected to have more measurement errors.

6.2 COMPARISON WITH EXPERIMENTS ON GLASS BALLS IN RESONANT COLUMN DEVICE
To evaluate the applicability of the theory, the theoretical results
are also compared with the experimentally observed shear modulus of packings
of uniform glass balls from resonant column method. A confining pressure
is initially applied to the cylindrical samples made of glass balls
contained within a rubber membrane (Yanagisawa 1983). Then the torsional
oscillation is applied on the top of the specimen to develop a shear wave
transmitted through the specimen. The shear wave velocity or the shear
modulus of the material can be obtained from the observed resonant frequency
and the dimensions of the specimen.
Since no information is available on the packing structure, for

computing the theoretical results we assume that the packing of glass balls
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Fig. 6.5 Strains versus direction of major principal stress axis « for the
one-size random packing of cylinders.
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is statistically isotropic. The shear modulus is taken to be 5.75x106 psi
(4.0x107 kN/mz) and the Poisson’s Ratio is 0.13 for glass. The relationship

between the co-ordination number m and the void ratio e used in this

prediction is given by Eq. 4.2 by Yanagisawa (1983).
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Fig. 6.7 shows the comparison of the predicted and measured moduli

for the packing of glass balls. As can be seen from Fig. 6.7, the shear

modulus is influenced significantly by the confining pressure o, The é
ok
experimental values show that the shear moduli increase in proportion to the
§5 0.42 power of the confining pressure o, while in theory the power is 0.33. ;
t
!
ﬁg 6.3 COMPARISON WITH EXPERIMENTS ON SANDS UNDER LOW AMPLITUDE WAVES
4
. 0
- 6.3.1 Comparison with empirical equation b
W ‘l
C 4
2 Applicability of the theory is also evaluated by comparing with an 4
(X
“
il empirical equation for sand which was obtained from the results of a large ;
.t
amount of resonant column tests conducted on dry Ottawa sands by Hardin and \
W
E; Black (1968). The shear modulus of sands is empirically expressed as
e 4
G 2630 (2.17-¢)° ot/? 6.3 X
!! - (1+e) ) 1
. where the shear modulus G of the packing and the confining stress o are :
e
~ expressed in psi. N
ot ‘n}
o A modified form of contact law for rough inelastic non-conforming *
gg bodies (Chang, Misra and Somasega 1988a) is used for computing the 2
J
theoretical results for the comparison purposes. The shear modulus of ;f
& [y
material used is 7.5x106 psi (5.2x107 kN/mz) and the Poisson’s ratio v is ¢
. 0.13. The relationship between m and e used here is in the following form, ?
R* ‘
™ = \
N e o (23 - M) (6.4) )
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Eq. 6.4 is shown in Fig. 6.8 compared with measured data on void ratio and

o™
%"

coordination number. For convenience, a linear line is used to fit the

measured data. The comparison between the shear moduli obtained from the

P e e

theory and the empirical equation is shown in Fig. 6.9.

6.3.2 Effect of initial stress conditions

The initial stress condition is an important factor influencing the
mechanical behavior of a packing. A closed-form solution is difficult to

obtain for initial stress conditions other than isotropic for the reason

B IR e W

that the forces vary at contacts and hence the contact stiffness is

different for each contact.

TR

Moduli of an isotropic packing are computed for different initial
stress conditions. The different initial stress conditions are represented

by points of stress state lying on three stress paths shown in Fig. 6.10

namely, 1) compression path, 2) constant mean path, and 3) reduced

compression path. Initially, stresses 9= Oy= ;= 10 psi (69 kN/mz). In

path 1, the axial stress 9 is increased while the confining stress (az=o3)

is kept constant. In path 2, 9 is increased and 9 and c3decreased wvhile

Y.

]

the mean stress is kept constant. In path 3, 9y and g, are decreased while

R& the vertical stress % is kept constant. The moduli are computed using \
""’J G=7.5x10%si (5.2x107 kN/m?), v=0.13, and $,=24°. It is observed that,

under these stress conditions, the packing exhibits cross-isotropic behavior 1

)

with properties symmetrical about z axis. ;

?‘ The computed Young’s moduli in the vertical direction are shown in A

Fig. 6.11 for the three stress paths. VWith an increase of stress ratio, the ﬁ

gg moduli in the vertical direction increase for the compression path while the £

Y moduli decrease for the reduced compression path. For the constant mean ;

path, the moduli decreases only slightly. This trend is in agreement with

3
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the trend observed in the experimental tests by Yanagisawa (1983). For )
I! stress ratio 01/03 greater than 2.3, the Young’s moduli and the shear moduli

4
: - (X}
show appreciable decrease because the shear force exceeds the contact shear

-

strength for many contacts. For comparison, the computed Young’s moduli in
the horizontal direction and the shear moduli are also shown in Fig. 6.11

and 6.12 respectively.
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